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Among a triad of gravity waves in a uniform shear flow, a remarkably powerful 
second-order resonant interaction may take place. This interaction is character- 
ized by large growth rates of waves which propagate in directions oblique to that 
of the primary flow, and by a systematic transfer of energy from the primary 
flow to such waves. Most of the energy transfer takes place in the vicinity of a 
' critical layer ', where viscous forces are dominant. 

Provided the resonance condition may be satisfied, a uniform shear flow which 
is perturbed by a two-dimensional wave of small but finite amplitude may be 
unstable, owing to the growth of two initially infinitesimal oblique waves which 
complete the resonant triad. 

1. Introduction 
Phillips (1960) has shown that no second-order resonant interactions are 

possible among a triad of gravity waves in a liquid which is otherwise at rest, but 
that third-order resonant interactions can occur among a group of four such 
waves. Further work on gravity waves by Benjamin & Fier (1967) and on in- 
ternal waves by Davis & Acrivos (1968) reveals that a single wave of finite 
amplitude may be unstable, in the sense that it becomes distorted by the growth 
of resonant harmonics which feed upon its energy. Such interactions are mani- 
festations of an energy-sharing mechanism in which, if viscous dissipation is 
neglected, the total amount of wave energy is conserved. 

It is here shown that the presence of a uniform shear flow in the liquid can 
permit a remarkably strong second-order resonant interaction among three 
suitable gravity waves, and that this resonance can produce continuous wave 
growth due to systematic extraction of energy from the primary flow. In  this 
case, the total wave energy is no longer conserved, but increases with time. One 
consequence of this result is that, in the presence of a suitable wave of small but 
finite amplitude, two initially infinitesimal waves which complete the resonant 
triad may grow indefinitely (or, rather, until the second-order theory is in- 
applicable), while the original wave remains essentially unaltered. 

Recently, Kelly (1 968) has examined second-order resonant interactions of 
disturbances in two particular inviscid shear flows. For one of these flows, a 
stably stratified antisymmetric shear layer, resonance leads to the temporal 
growth of a disturbance with fixed spatial periodicity. In  this case, a net energy 
transfer from the primary flow to the disturbance does indeed take place. 
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Kelly's analysis deals only with two-dimensional disturbances which propagate 
in the direction of the mean flow. In  contrast, three-dimensionality is an essential 
feature of the present analysis; for, unlike the cases examined by Kelly, no 
resonant interaction is found to be possible among three gravity waves which 
propagate in the direction of flow. 

Raetz (1959) has demonstrated that certain three-dimensional disturbances 
in Blasius flow fulfil the conditions of second-order resonance, but it is not clear 
whether this resonance can lead to energy-extraction from the primary flow 
or simply to energy-sharing among the waves. Stuart (1962) and Benney 
(1961, 1964) have also examined three-dimensional disturbances of finite ampli- 
tude in parallel flows, but none of these papers specifically concerns resonance 
phenomena. 

The present work examines second-order resonant interactions of gravity 
waves in a liquid of small viscosity, which possesses a linear velocity profile. The 
results are subsequently extended to waves on the interface between two fluids of 
different densities, each of which may have a linear velocity profile. The re- 
striction to linear velocity profiles is made for convenience, but it seems likely 
that similar results might hold for curved profiles. That the chosen velocity 
becomes indefinitely large at great depths is no disadvantage; for the only rele- 
vant portion of the velocity profile is that within a layer near the free surface, 
the depth of which is comparable to the wavelengths of the disturbances 
considered. 

Not all possible resonant triads are examined. For simplicity, attention is 
restricted to those which are composed of one two-dimensional wave propagating 
in the direction of the primary flow, and two oblique waves which propagate at  
equal and opposite angles to this direction. For such a triad, resonance occurs 
when (i) the wave-number components of the oblique waves in the direction of 
the primary flow are equal to half the wave-number of the two-dimensional 
wave, and (ii) the components of all three phase velocities in the direction of the 
primary flow are equal. With a given two-dimensional wave and a sufficiently 
large velocity gradient in the primary flow, these conditions are shown to be 
satisfied by two possible pairs of oblique waves, each of which has an angle of 
propagation between 60" and 90" to the direction of mean flow. 

For gravity waves, the resonance condition turns out to be rather severe; mean 
velocity gradients being required which are probably in excess of any which 
might occur in nature (for example, in wind-driven surface currents in the ocean). 
However, for interfacial waves in liquids with a small density difference the 
condition for resonance is more easily achieved, provided the velocity gradients 
in the two liquids are not equal. 

The essential features of the analysis are as follows. At resonance, all three 
waves have the same ' critical layer ' a t  which the component of phase velocity in 
the direction of mean motion equals the velocity of the primary flow. Except near 
this critical layer (and in a weak boundary layer near the free surface, whose 
effect is slight) an inviscid analysis is valid. For the oblique waves, linearized 
inviscid theory yields singularities at the critical layer in the horizontal velocity 
components which are at  right angles to the respective directions of propagation. 
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These ‘cross velocities’ are a direct consequence of the periodic stretching and 
contraction of vortex lines associated with the primary flow. When pursued to 
second order, the inviscid analysis exhibits strong (at worst, fourth-order) 
singularities a t  the critical layer. Consideration of viscous effects near the critical 
layer removes these singularities, and the resultant expressions for the second- 
order growth rates of the oblique waves are found to be dominated by the con- 
tribution of these viscous terms. More precisely, if the free-surface displacements 
associated with the oblique waves are Re{a,,,(t) exp [i(QIcx & Zy- &t)]}, and that 
due to the two-dimensional wave is Re{a3(t) exp [i(kx- w t ) ] } ,  where Ic ,  Z and w are 
real, the complex wave-amplitudes u ~ , ~ , ,  are found to satisfy equations of the 
form 

- = 0 - a.za3, 
at (;:) dt 

where * denotes the complex conjugate and v is the kinematic viscosity of the 
liquid. 

The surprising feature of these results is that the growth rates of the oblique 
waves are proportional to v-l, and are consequently much larger than expected. 
This indicates a very strong resonant interaction in which viscous forces near 
the critical layer transfer energy from the primary flow to the waves (or vice 
versa). If the initial phases of a1,2,3 are appropriately chosen, the oblique waves 
grow continuously while the two-dimensional wave is little changed. 

Because the resonant interaction is so strong, this second-order analysis 
holds only for rather small wave amplitudes. I n  particular, the usual assumption 
that the wave slopes are small compared with unity does not here ensure that the 
growth rates are small compared with the frequencies of the waves. Instead, the 
necessary requirement is that a Reynolds number based upon wave-amplitude 
and phase velocity should be small compared with unity. 

2. Inviscid linear theory 
The flow configuration is shown in figure 1. The mean velocity increases 

linearly with vertical depth z below the undisturbed liquid surface, the x-axis is 
taken horizontally in the direction of motion, and the y-axis (not shown) com- 
pletes the right-handed Cartesian system. Velocity components in the x-, y- and 
z-directions are denoted by u, v and w respectively. The primary flow is 

u = E = E ’ z ,  v=w=o; 

and, superimposed on this flow, there are three small travelling-wave disturb- 
ances with (x, t)-dependence of the form 

exp{i(~kx+Zy-w,t)}, exp{i(+kx-Zy-o,t)}, exp{i(kx-wt)), 

which, for convenience, will be called waves 1 , 2  and 3 respectively. The constants 
I c ,  I, wo and w are assumed to be real. 

The velocity perturbations associated with wave 3 are 

u, = - i ~ ,  exp - ~ c z )  exp {i(~cx - wt)>, v3 = o,\ 
w3 = A ,  exp { - ~ c z }  exp {i(~cx - wt)} ,  j 
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where A, is some complex constant, and it is understood that only the real parts 
of these expressions have physical significance. 

On introducing new horizontal co-ordinates k,, 8, defined as 

mB, = glcx + ly, mfj, = - lx + iky, 

J 
FIGURE 1. The flow configuration. 

where m = ($E2 + 12)&, the velocity components a,, a,, W, of wave 1 in the directions 
B,, 8, and z are found to be 

8, = -iA,exp{-mz}exp(i(m2,-wot)}, w1 = A,exp(-mz}exp{i(m~l-w, t )} ,~ 

21 a - p -  A,exp{ -mz}exp{i(m2,-u0t)}, - imk(z - a )  
(2 -2 )  

where a = 2w0/?Tlc. The expression for the ' cross-velocity ' 0,  is derived from the 
linearized equation of motion 

= 0, 

and it is singular at  the critical layer z = a, where the fluid velocity equals the 
component of phase velocity in the x-direction. The corresponding velocity 
components u,, v1 in the x- and y-directions are given by 

mu, = *kit, - la,, mv, = la, + Bka,. 

The velocity components u2, v2, w, associated with wave 2 may be obtained 
similarly, by writing - 1 for 1 and A ,  for A ,  in the above results. The correspond- 
ing 'cross-velocity ' 8, is in the direction Q, = (l/m)x+ (5/2m) y, and the wave 
propagates in the direction 6, = (k/2m)x- (Zlm) y. 

At the free surface, 
z = 5 = Cl + b + 6, 
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where << is the downwards vertical displacement of the surface due to the ith 
wave. The linearized kinematic conditions are therefore 

Also, the condition that the pressure is constant at z = 5 gives the linearized 
result 

[Pil,=O = - p g L  (i = 1,2,3),  

where pi denotes the pressure fluctuation associated with the ith wave, p is the 
liquid density and g is gravitational acceIeration. 

For wave 3, the linearized x-momentum equation yields 

[ikP3+ $+u'w3 z-0 = 0, 
2u - I 

which, together with the above results, leads to the equation 

1 B=O 

23w3 iku'--gIc%, aw3 = 0. [a- at 
( 2 . 3 ~ ~ )  

Similarly, for wave 1, the equation of motion in the 2,-direction gives the result 

(2.3b) 

and, for wave 2, an equation identical with this is satisfied by w2. Equations (2.3a, 
b)  yield the dispersion relations for w and wo, namely 

ku' 
3m 

d-u 'w-gk  = 0, wi- -wo-gm = 0. (2.4a, b)  

3. The resonance condition 
The condition that waves 1,2  and 3 should form a resonant triad is that 

w = 2w0. (3.1) 

We must now examine whether, for given U' and E ,  there exist permissible values 
of m such that this condition is satisfied. Since m = (*k2+ P)*, it is necessary that 
mlk should be greater than &. 

Without loss of generality, we may assume that Ic, m, w and wo are all positive, 
but that U' may be positive or negative. Then, from equations (2.4a, b)  and (3.1), 
we require that 

+ 4gk)& + U' = [(kZ'/m)2 + 16gm]* + kU'/m; 

and this equation may be re-expressed as a quadratic in mlk, namely 

8(m/Ic)2 - ( A  + 2) (m/r%) + h = 0, 

where 
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When u' is negative, there is no real root mlk which is greater than 4. Accordingly, 
there cannot be resonance for U' < 0. However, there are two real roots m/k 
which are greater than & when h > 2(7 + &), and this condition is satisfied 
whenever U' 7 + 4 &  

~ > .- 

(gk): ' ( 8  + 486)6' 

Therefore, when U'(glc)-* is sufficiently large, there exist two pairs of oblique 
waves which form a resonant triad with a two-dimensional wave of wave- 
number k .  The angle of propagation of these waves to the x-axis is 6' = c0s-l (kl2m) 
and it is readily shown that all permissible values of 6' lie between 60" and 90". In  
figure 2 ,  the resonance condition is displayed as a graph of 6' against U'(gk)-*.  At 
the minimum value of 3.60 for U'(gk)- i ,  6' is 74" 27'; and, when E'(gk)-i is large, 
the two values of 6' approa,ch 60" and 90". 

Angle of propagation 0 (degrees) 

FIGURE 2. The resonance condition. 

4. Viscous linear theory near z = a 
For oblique waves, the linear inviscid theory yields singular solutions at  

z = a. As shown in $ 2 ,  these singularities occur in the 'cross-velocity' 6, associ- 
ated with wave 1 and in the corresponding velocity component of wave 2 .  These 
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singularities may be eliminated by including viscous terms in the vicinity of 
z = a. This has been done by Benney (1961, 1964); and, for later reference, the 
results are summarized here. 

On retaining the highest-order terms in (iZ/k2v) near z = a, the (viscous) 
linearized equation for 6, reduces to 

( - g + Z )  L(Z) = 1, 

where (?itk/2v)4 is large compared with k. Also, L(Z) satisfies the boundary con- 
ditions L(Z) +Z-l as Z-+ & ic~. By symmetry, similar results hold for 6,. The 
solution L(2)  of (4.1) is a Lommel function, several properties of which are 
described by Benney (1961). In  the present paper, the following properties will 
be used. 

(i) When Z = iY and Y is real, 

L(Z) = L,( Y )  + iLi( Y ) ,  

where L, is an even and Li an odd function of Y .  Also, L, and Li satisfy the 
equations d2L, -+YL,=-I,  dZL, 

d Y 2  __- YL, = 0. 
d Y2 (4.2 a, b)  

(ii) L(Z) may be expressed in terms of solutions h,, h, of the homogeneous 
equation d2h/dZ2 + Zh = 0, as 

provided -gn- < arg(Z) < gn-. The solutions h,, h, are the modified Hankel 
functions 

and W{h,(Z), h,(Z)} is the Wronskian of h,(Z) and h,(Z), which is found to satisfy 

h,(Z) = ($Z t )*Hf) ($Zs ) ,  h,(Z) = ($Zt)*HT)(gZ*), 

For later use we also require an expression for the velocity component ST in 
the &-direction which is associated with the ' complex-conjugate ' wave with 
(el, t)-dependence exp { - i(m2, - wet)}. (We recall that the velocity component 
in the Q1 direction is actually Re{6,} = &{O1 + Of}.) For pure imaginary values of 
2, the appropriate expression is 

where AT is the complex conjugate of A,, and L( - 2) equals L,( Y )  - iLi( Y )  by 
virtue of (i). A similar expression may be derived for the corresponding velocity 
component 6; of wave 2. 
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5. The inviscid second-order equations 
At resonance, the interaction of waves 1 and 2 produces some inertia terms 

whose (x, t)-dependence is identical with that of wave 3. The second-order equa- 
tions of motion for wave 3 are therefore of the form 

(;+u;)u3+u'w3+-- 1 8P3 = -[u.Vu], 
P ax 

= -[u.Vv], 

(st+uc.)w3+l. a - a  1 aP3 = -[u.Vw], 

a ~ ,  aw, -+- = 0, ax az 

where the results of linear theory are used in evaluating the right-hand sides, and 
only those terms are retained which have (x, t)-dependence like exp { i (kx  - wt)} .  
Some care must be taken in deriving the non-linear terms. In  particular, use 
must be made of the multiplication rule Re{A)Re{B) = &Re{AB+ AB*}, where 
B* is the complex conjugate of B. Assuming that the x-dependence of wave 3 
remains Iike exp {ikx},  we may eliminate u3 and p 3  from the above equations to 
obtain a 

-+u- (Wjl-k2W,) = k2[u.Vw]+ik- [u.Vu], 
(aat - :x) az 

where the primes denote differentiation with respect to z. Also, the relevant 
inertia terms may be expressed in the form 

212 ikl 
m 2 m  

[u. VW] = - - WlW2 +- (02Wl - 01w2), 

ik12 1 a k2 

m2 2 m  az m 
[u . VU] = __ (w1w2 - 0102) + -- (- + -) (W102 - ZU2O1), 

if it is assumed that the z-dependence of w1 and w2 is that given by inviscid theory. 
(No assumption has been made regarding the z-dependence of Q1 and 9,: accord- 
ingly, the above expressions remain applicable near z = a on using the viscous 
solutions for Ol and 02.) The final second-order inviscid equation for w3 is then 

(5.1 b)  

where the latter, but not the former, version of the right-hand side is obtained 
on using the estimates (2.2) of inviscid theory for 0, and 6,. Clearly, the inviscid 
analysis leads to a strong singularity at  z = a. 
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The second-order equations for waves 1 and 2 are found similarly. For wave 2, 
the results are 

where [u.V(+iku-ilv)] = - $ m ( 2 m + k ) ( w 3 w ~ ) - -  i k l ( a  -+k ) ( w  3 a*) 1 > 2m az 

The equation for w2 is then 

( 5 . 2 ~ )  

(5.2b) 

The equation for w1 is found by symmetry, on interchanging the subscripts 1 
where the inviscid estimate of ST has been used to obtain (5.2b). 

and 2 and writing - 1 for 1. 

6. The second-order solution 
For each wave, wi consists of an irrotational part V$ and a rotational part W$, 

where 
v2q = 0 

and 9; is a particular solution of the appropriate non-homogeneous second- 
order equation. At large depths, both W ,  and Wi must tend to zero. Since % 
is not a solution of the linearized equations, it  must be a second-order small 
quantity. We may therefore assume that is large compared with K. Accord- 
ingly, to the present approximation, it is sufficient to allow for changes in 
amplitude of the irrotational parts K, while treating the rotational parts Wi as 
periodic in time. The non-homogeneous equations may then be used to determine 
the periodic components Wi (to within an arbitrary additive term B K ,  where B 

is small), and the free-surface boundary condition yields the time-dependence 
of lq. 

We write w3 = %+ W3 and w2 = W2+W2, where 

W, = A3(t) exp { - kz} exp {i(kx - wt)} ,  

W, = A 2 ( t )  exp { - mz} exp {i(m&, - iwt)} ,  

"W; = Y,&(z) exp { i (h  - wt)}, 

W2 = ,@;(z) exp (i(mg2 - iwt ) ) ;  

also, w1 may be represented similarly to w2. We further assume that the rate of 
change of A,(t) is sufficiently small that 

IAi/~AiI < 1 (i = 1,2 ,3) ,  (6.1) 

where t,he dot denotes didt. 
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The second-order free-surface boundary conditions for waves 1 ,  2 and 3 are 
similar to the linearized equations (2 .3a ,  b), but the right-hand sides are now no 
longer zero. Instead, they contain terms which derive from the inertia of the 
liquid at  the free surface. The left-hand sides of these equations may be written 
as 

= (ik(2w - U’) A, - w2( 24 + k%T&=,} exp {i(kx - wt)), 
at Z=O 

( 6 . 2 a )  

a3w, 

[a- 

= { i ( m w -  $ k ; i i ’ ) ~ i - ~ w 2 ( ~ ~ + m Y ~ ~ ) , = , } e x p { i ( m ~ j - ~ w t ) }  ( j  = 1 , 2 ) ,  (6 .2b)  

on using the dispersion relations (2 .4a ,  b). Also, the inertia terms are O(ok2A, A,) 
in the boundary condition for w,, and O(wk2A,AT) in that for w2. In  fact, a 
precise derivation of all these terms is unnecessary, since it turns out that the 
contributions due to (g-i + m@j) ( j  = 1 , 2 )  play a dominant role in determining 
the wave growth. 

Now, 
(6 .3a )  

and [i?; + m%;]e=o = - (@-‘i-mz,Tj)e-mzdz ( j  = 1 , 2 ) ,  (6 .3b )  

since the g; (i = 1 , 2 , 3 )  decay to zero a t  large z. Also, since the Wt are assumed 
to be periodic in x and t, the above integrands may be evaluated by means of the 
non-homogeneous equations of motion (5 .1)  and (5 .2 ) .  However, the inviscid 
equations ( 5 . l b )  and (5 .2b)  yield expressions for these integrands which are 
singular at  the critical layer z = a, the strongest singularity being of fourth 
order. The inviscid equations are therefore inadequate for the present purpose, 
and the influence of viscosity near x = a must be examined. 

Y 

7. Viscous second-order theory near z = a 

( 5 . 1 ~ ~ )  and (5 .2a ) ,  but include, respectively, the viscous terms 
v (qF-2k2W”: t -k4W,J ,  v ( W ~ - 2 m 2 W ~ + m 4 W 2 )  

on the left-hand sides. It is convenient to define the new variable 

and to reintroduce the variable 2 = i(Zlrk/2v)-$(z - a)  which was used in $4. From 
results (2.1), (4 .1)  and (44, we find that, near z = a, 

The viscous second-order equations satisfied by W3 and W, are similar to 

2, = i(U’k/v)f (2 - a) ,  

A h  w1w2 = m2 ~ {L(2)}2AlA2exp{-2ma}exp{i(kx-wt)},  - 41, ( 2i$v) 8 

w,q = - 2z ( __ ’‘ )‘L( - 2) A,AT exp { - (m + k )a}  exp { i (&kx - ly - gut)}, 
m 2k2v 

where only the highest powers of (U‘/k2v) have been retained. 



Resonant gravity-wave interactions in a shear $ow 

Near z = a, the equations for V3 and W2 reduce to 

541 

where 

z = 2-fZ3, 
d2 

dZ 
A3ATexp{-(m+k)a}-2[L(-Z)]. and 

Also, in order to match the inviscid solutions, g'i must decay as Z-4 away from 
the critical layer. Near z = a, the appropriate solution for $-; is (cf. 4.3) 

( -  8n- < argZ3 < in), (7.1) 

and a similar solution exists for YT-: with Z3 replaced by Z and F3(5) by F2(c). 
Having found these solutions, we may now evaluate the contributions to the 

integrals of (6.3a, b )  which derive from the vicinity of the critical layer z = a. 
Clearly, IWlI k21Vil near z = a;  and so, to the required order of approxima- 
tion, these contributions are 

(Note that the prime always denotes dldz and not d/dZ or d/dZ3.) 
Now, @;" and $?'; are given by (7.1) and its counterpart, and we recall that the 

Wronskian W is a constant whose value is given in result (4.4). Integration by 
parts yields 

-/%:h1(6) d5S2' - i m  h 2 ( w x ) d 5 }  - -k7 zm -im F3@3)L(Z,) dZ, 

= + / + i m  p3(z3) L(z3) dZ3, 
- i m  

since the contribution from the end points is zero. Here, we have used the 
property that the Lommel function L(2)  satisfies equation (4.3). Similarly, 

+im 

-im 
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Now, F3(Z,) L(2,) is an analytic function of Z, for - $n < arg 2, < $n, and 
F,(Z,)L(Z,) behaves asymptotically as Zi4 for large lZ,(. Contour integration 
therefore reveals that 

f i m  .l'- i m  
%$dZ3 = 0, (7.2) 

when '??-: is approximated by the expression (7.1). This means that 1, possesses 
no highest-order viscous term proportional to v-l. 

However, contour integration cannot be employed directly to evaluate I,: 
for the function L( -2) occurs in F,(Z), and L( -2) is defined only on the 
imaginary Z-axis. An integration by parts reveals that 

Also, the change of variable 2 = i Y ,  where Y is real, leads to the result 

since L(2)  = L,( Y )  + iLi( Y )  and L( -2) = L,( Y )  - iLi( Y ) .  Clearly, the integrand 
is always positive. 

Now, from results (4.2a, b) ,  we have 

d2L, d2L. 
d Y 2  dY2 

L,-+L,--'- - -L,. 

Therefore, on integrating by parts, we obtain 

Also, since L(2)  N Z-l, for 121 large and - in < arg2  < $n, an appropriate con- 

Semi L(2)d.Z = ni. 
tour integration yields + m i  

The final expression for I2 is therefore 

nil2 
m v  I, = ,exp{-(2m+k)a)A3AT, 

and, by symmetry, the corresponding contribution for wave 1 is 

nil2 
m2v 

I, = -exp{-(2rn+k)a)A3A~. 

Unlike I,, both I, and I, are proportioned to v-1. 

(7.3a) 

(7.3b)  

8. The growth rates 
The free-surface boundary conditions for waves 1 and 2 involve the expressions 

(6.3 b )  ; and it is shown in the preceding section that the integrals possess contri- 
butions I ,  and 1, from the vicinity of the critical layer, which are O ( V - - ~ A , A ~ )  
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and O(v-lA, A f )  respectively. The rest of the range of integration yields contri- 
butions which are O(w-lk2A3 A;)  and O(W-~IC~A, AT), and these are of the same 
order of magnitude as the second-order inertia terms at  the free surface. Since 
w/k2v  is large, a first approximation is obtained by neglecting all but the 
dominant terms which arise from near the critical layer, and which explicitly 
involve the liquid viscosity v .  Therefore, from results (7.2) and (7.3a, b ) ,  the 
growth rates of the waves are, to good approximation, 

k- lA ,  = KA,A;,  k-,A, = KA,AT, k-IA, = o(w/vk2)A ,A , ,  (S.la,b,c) 

where 
nw2P exp { - (2m + k )  a} 

2m2kv(ku' - 2mw) 
K =  -.-, = w/kU', 

and w ,  U',  k and m are related by (2.4a, b )  and (3.1). In  terms of the angle of propa- 
gation 8 of the pair of oblique waves, 

This expression reveals that, for given values of U' and k ,  the resonant inter- 
action is likely to be stronger for the smaller than for the larger permissible 
value of 6' (see figure 2) .  For example, K equals - @r(w/kv) e-, when 0 = 60", but 
it tends to zero as 8 approaches 90". 

It is apparent from results (8.1) that, except possibly when A ,  and A ,  are 
both very large compared with A,, the rates of change of A ,  and A ,  are much 
greater than that of A,. Accordingly, for most purposes, A ,  may be regarded as a 
constant; and, in this case, A ,  and A ,  satisfy equations of the form 

A -  I - ( K A , ( ~ A , ,  ( K A , ) ~  constant (j = 1,2). 

Depending on the initial values of A,, A ,  and their derivatives, A ,  and A ,  either 
both grow or both decay exponentially. In  particular, if there exists a two- 
dimensional wave A,  of small but finite amplitude, and if the inequality (3.2) is 
satisfied, initially infinitesimal oblique waves which complete the resonant triad 
may grow to finite amplitude, while the original wave remains essentially un- 
changed. These waves grow as exp(I~A,It), and ( K A , ~  is typically O(w21a,(/kv), 
where a, ( = - io-lA,) is the amplitude of the two-dimensional wave. The growth 
rates are therefore O(wR,), where R, is the Reynolds number based upon the 
phase velocity and amplitude of the two-dimensional wave. 

Because of condition (6.1), the present second-order analysis holds only when 
R, < 1, and this generally requires the wave amplitude la,] to be rather small. 
However, if the magnitude of A ,  is similar to that of A,, condition (6.1) does not 
place such a severe restriction on the amplitudes of the oblique waves (see Q 10). 

The above analysis has shown that initially small oblique waves may grow 
until they are large compared with the original two-dimensional wave: but it is 
not yet established whether, on the basis of second-order theory, the oblique 
waves may grow indefinitely large compared with the two-dimensional wave, for 
small but non-zero values of the liquid viscosity. More precisely, if A, = PA, A,  
where CG is some constant (which is small compared with K ) ,  changes in A,  may 
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be ignored only if IA,/A,I and IA,/A,I are small compared with I K / , u \ .  When 
A, and A ,  are sufficiently large (but still small enough for second-order theory to 
apply), it is conceivable that a quasi-equilibrium state might be reached in 
which the total wave energy is either constant or periodic in time. In  order to 
explore this possibility, the growth of the two-dimensional wave must be 
examined. 

9. The equation for A, 
The equation for A, may be derived from a purely inviscid analysis, and this 

has in fact been done. However, although the essential features are quite straight- 
forward, the algebraic details are rather complicated (for example, all the inertia 
terms in the free-surface boundary condition must be retained). Accordingly, it  
does not seem worth while to describe the analysis in full: instead, the following 
brief account should suffice. 

Equation (7.1) shows that, near z = a, the approximate solution g-: is an 
analytic function of Z3 for - 87r < arg Z3 < 87r, and that 9: decays like 2 3 4  as 
lZ,i becomes large. This restriction on the argument of 2, requires that 

-$7r < arg(z-a) < &T; 

and, for this range in argument of ( z  - a), the viscous solutions tend asymptotic- 
ally to the inviscid solutions away from the critical layer x = a. Accordingly, in 
evaluating the integral of (6 .3a ) ,  it is permissible to use the inviscid solution for 
3&, provided the path of integration is indented under the resultant singularity 
at  z = a. However, as seen above, this procedure cannot be adopted in evaluating 
the integrals of (6 .3b) ;  for these it is not permissible to depart from the real 
z-axis, since F,(Z) and the corresponding function for wave 1 are defined only for 
pure imaginary values of 2. 

To second order, the inviscid equation (5.1 b )  yields 

and this result may be used to evaluate the integral of ( 6 . 3 a )  on indenting under 
the singularity at  z = cc. This leads to a result of the form 

where h is a complex constant whose real part derives from the contribution to the 
integral of the logarithmic singularity a t  z = a. The value of h does not depend on 
the viscosity v, and IAl is typically O(1). 

Now, the appropriate second-order equation for A, is (cf. 6 .2a)  

where the term in A derives from the second-order inertia terms which enter the 
boundary condition at the free surface, and which were omitted from equations 



Resonant gravity-wave interactions in a &ear flow 545 

(8.1). It is easily verified that A is real and typically O(1) .  The final equation for 
A, is therefore of the form 

where y is complex and typically O( 1).  
On writing r = kt, Bl,2 = K ~ I ~ I ~ A , , ~ ,  B, = KA,, where K is the (large) real 

constant defined in (8.2), the complete set of second-order equations (8.1a7 6 )  
and (9.1) become 

(9.1) k-lA - 3 - yA1A2, 

where ei@ = y / l y l .  
It may be shown that 

Now, unless ei@ = - 1, it is always possible to choose initial values of Bi such that 

Also, when cos$ 2 0, it is clear that 

at  all times. Therefore, if cos $ 2 0, there exists a triad of waves each of which 
grows indefinitely large with time. If - 1 < cos $ < 0, there may not be three 
such waves; but in this case it is easily shown that 

d2 
p ( I B 1 , 2 I 2 +  ICOS$’I IB3I2) = 2(1-Cos2$)IB312(IBi12+ IB2I2) 2 0. 

Initial values B1,,,, may therefore be found such that the quantities 

IB1,212+ ICOS$I I & 1 2  
grow indefinitely with time. It follows that, except when cos$ = - 1 (which 
case is excluded from the present analysis since y is complex), the energy of 
suitable initially small disturbances grows without bound, on the basis of second- 
order theory. 

The above remarks apply to disturbances with initial phases such that 

35 
d(lB,12)/dr > 0 (i = 1 ,2 ,3 ) .  

Fluid Mech. 34 
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However, it  is also possible to choose disturbances such that initially 

d(lBiI2)/d7 < 0. 

At first, such disturbances lose energy to the mean flow; and, subsequently, 
either all three waves decay to zero, or the real parts of 

(B1B2B$) and (ei+BIBzB$) 

change sign and the disturbances grow again. 

10. Discussion 
The above results show that the primary shear flow is unstable to small, but 

finite, disturbances provided the resonance condition (3 .2 )  is satisfied. The 
instability mechanism is essentially non-linear, the flow being neutrally stable 
on the basis of alinearized inviscid analysis. The resonant interaction of a suitable 
triad of gravity waves extracts energy from the primary flow, most of the energy- 
transfer taking place in the vicinity of the critical layer, where viscous forces 
are dominant, and most of the energy going into the oblique waves. 

In  practice, of course, viscosity also has a damping role due to the weak 
periodic boundary Iayers just inside the liquid surface which are associated 
with each wave. However, it  is easily demonstrated that this damping mechan- 
ism is likely to be negligible in the present context. The damping effect con- 
tributes additional linear terms on the right-hand sides of (&la, b )  and (9.1) 
which are at  most O{(wv)*Ai} where i = 1 , 2 , 3  respectively. Terms of this magni- 
tude occur in the presence of surface contamination (see Miles 1967; Craik 1968); 
but, for a clean surface, the appropriate terms are only O(kvA,). 

If the oblique waves denoted by A, and A,  are of similar magnitude, viscous 
damping terms of O{(wv)frAj} (j  = 1,2)  are negligible compared with the re- 
spective non-linear terms of equations (8.1 a ,  b)  provided 

and the corresponding damping term for A, is small compared with the non- 
linear term of (9.1) if 

lAll IA2lk (&)+ $ 1. 
IA3IW 

On recalling that Ai = --"ai, where ai is the complex amplitude of the ith 
wave, the above conditions may be rewritten as 

Also, when la,/a,l is O(l) ,  condition (6.1) is satisfied if 

(10.1 a, b) 

(10.2a, b)  
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When o /k2v  is sufficiently large, it is clear that there exist ranges of amplitudes 
lai( which satisfy conditions (10.1 a )  and (10.3a, b) .  However, conditions (10.1 6) 
and (10.2a) are incompatible unless lal/ and la21 are very large compared with 
la3\. Fortunately, this is not a serious restriction; for, when all three amplitudes 
are of similar magnitude, the growth (or decay) rate of a, is insignificant compared 
with that of a, and a2, and condition (10.1 b )  is unimportant. The growth rate of 
a, is significant only when a, and a2 are large compared with a3, and then con- 
dition (l0.lb) is likely to be satisfied. With a clean surface, when the viscous 
damping terms are only O(kvA,) ,  the appropriate conditions are less stringent 
than (lO.la, b) .  

Condition (10.2a) limits the validity of the analysis to cases where the ampli- 
tude of the two-dimensional wave is rather small: this is because of the re- 
markable strength of the resonant interaction. The growth rates of the oblique 
waves are small compared with their frequencies only if the Reynolds number R, 
based on the wave amplitude la,l and the wave velocity o/k is small compared 
with unity. This is a much stronger condition than the more usual one that the 
maximum wave slope la,,kl should be small. 

The above analysis is restricted to resonant triads composed of a single two- 
dimensional wave and two oblique waves which propagate at  equal and opposite 
angles to the primary flow. It is probable that resonance may also occur among 
triads which do not have this geometrical symmetry : however, the interactions 
associated with such resonance are likely to be less intense than those discovered 
here. The reason for this is that, with an asymmetrical resonant triad, there will 
generally be three separate critical layers, one of which is associated with each 
wave; whereas, in the present case, all three critical layers coincide, and the 
importance of viscous forces is thereby increased. 

Throughout the analysis, the effects of surface tension have been ignored. 
This is justifiable provided all the relevant waves are sufficiently long; but, for 
shorter waves, the appropriate resonance condition would be much modified 
from that given in (3.2). However, if a resonant triad of gravity-capillary waves 
were found, it seems likely that the same non-linear energy-transfer mechanism 
would operate. 

As mentioned in the introduction, the resonance condition (3.2) is rather severe, 
requiring larger velocity gradients at typical wave-numbers than might be 
expected to occur in nature. For example, for fairly long gravity waves with 
k - 0(10-2) cm-l, condition (3.2) requires that the velocity must change by at 
least O(l0)  cm sec-l for every centimetre of depth. However, it is shown in the 
next section that the condition for resonance may be more easily met for gravity 
waves on the interface between two fluids of different densities. Also, the charac- 
teristic wave velocities are typically smaller for interfacial waves than for surface 
waves; and the restrictions corresponding to (lO.la, b )  and (10.2a, b)  on the 
validity of an interfacial-wave theory allow larger wave amplitudes than are 
permissible for surface gravity waves. 

35-2 
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11. The theory for interfacial waves 
Let the two fluids have densities p1 and p2 ( < pl),  and let their velocity gradi- 

ents be U; and i&, where the subscripts 1 and 2 refer, respectively, to the lower and 
upper fluids. The linear dispersion relations for interfacial gravity waves which 
correspond to (2.4a, b) are easily shown to be 

( l l . lu ,  b) --I w2--;12;w-ggy:lc = 0, wg-- u,w,-g,"z = 0, 
3-m 

where 

It is clear that the above equations are identical with (2.4a, b) with g and U' re- 
placed by g* and ?&. The appropriate resonance condition for interfacial waves 

(11.2) 

by comparison with (3.2). In particular, when the lower fluid is only slightly 
heavier than the upper, and whenp,ii; is not very close to p2& condition (11.2) is 
satisfied even by rather small velocity gradients, provided plU; > p2UL. 

The non-linear analysis described in $05-8 may readily be extended to deal 
with interfacial gravity waves. Since the influence of viscosity in the vicinity 
of the critical layer dominates the non-linear interaction process, equations 
(8.1 a, b, c) remain valid, but w is now given by the dispersion relation (ll.la), 
while v and ii' are the kinematic viscosity and velocity gradient of that fluid in 
which the critical layer occurs. Additional complications arise in determining the 
appropriate equation for A,; but, in any case, this hardly seems worth while since 
the oblique waves again grow much more rapidly than the two-dimensional one. 

The fact that condition (11.2) is readily satisfied for two fluids of slightly 
different densities and dissimilar velocity gradients suggests that a fairly simple 
experiment might be devised to confirm (or disprove !) the existence of the non- 
linear instability mechanism examined above. 
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